Math Lab: Combining Functions Graphically

These notes are intended as a summary of section 4.1 (p. 266 - 268) in your workbook. You should also read the section for more complete explanations and additional examples.

Part A - Adding Functions

The graph below shows two functions. Function A is college enrollment and Function B is university enrollment for the past few years. On the same grid, sketch a graph to show the total post-secondary enrollment for these years. Describe your strategy.

Part B - Subtracting Functions

The stopping distance for a car is a function of the speed of the car when the brakes are applied.

$$
\text { stopping distance }=\text { reaction-time distance }+ \text { braking distance }
$$

The graph below shows functions for stopping distance (curve) and reaction-time distance (line) versus speed. On the same grid, sketch a graph for braking distance versus speed. Describe your strategy.

Part C-Multiplying Functions

The graphs of $y=f(x)$ and $y=g(x)$ are shown below. Adapt the strategy you used for Part A and Part B to graph the product of these two functions: $y=f(x) \cdot g(x)$. Describe your strategy.

What are the domains of $y=f(x), y=g(x)$, and $y=f(x) \cdot g(x)$?

Part D — Dividing Functions

The graphs of $y=f(x)$ and $y=g(x)$ are shown below. Adapt the strategy you used for Part A and Part B to graph the quotient of these two functions:

$$
y=\frac{f(x)}{g(x)}
$$

Describe your strategy.

What are the domains of $y=f(x), y=g(x)$, and $y=\frac{f(x)}{g(x)}$?

Homework: \#1-3 in the section 4.1 AYU (p. 268-271). Answers on p. 271.

